Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(g1(X)) -> ACTIVE1(X)
TOP1(mark1(X)) -> PROPER1(X)
PROPER1(f3(X1, X2, X3)) -> PROPER1(X1)
PROPER1(g1(X)) -> G1(proper1(X))
ACTIVE1(f3(X, g1(X), Y)) -> F3(Y, Y, Y)
PROPER1(g1(X)) -> PROPER1(X)
PROPER1(f3(X1, X2, X3)) -> PROPER1(X3)
TOP1(ok1(X)) -> ACTIVE1(X)
G1(mark1(X)) -> G1(X)
ACTIVE1(g1(X)) -> G1(active1(X))
TOP1(ok1(X)) -> TOP1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(f3(X1, X2, X3)) -> PROPER1(X2)
G1(ok1(X)) -> G1(X)
PROPER1(f3(X1, X2, X3)) -> F3(proper1(X1), proper1(X2), proper1(X3))
F3(ok1(X1), ok1(X2), ok1(X3)) -> F3(X1, X2, X3)
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(g1(X)) -> ACTIVE1(X)
TOP1(mark1(X)) -> PROPER1(X)
PROPER1(f3(X1, X2, X3)) -> PROPER1(X1)
PROPER1(g1(X)) -> G1(proper1(X))
ACTIVE1(f3(X, g1(X), Y)) -> F3(Y, Y, Y)
PROPER1(g1(X)) -> PROPER1(X)
PROPER1(f3(X1, X2, X3)) -> PROPER1(X3)
TOP1(ok1(X)) -> ACTIVE1(X)
G1(mark1(X)) -> G1(X)
ACTIVE1(g1(X)) -> G1(active1(X))
TOP1(ok1(X)) -> TOP1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(f3(X1, X2, X3)) -> PROPER1(X2)
G1(ok1(X)) -> G1(X)
PROPER1(f3(X1, X2, X3)) -> F3(proper1(X1), proper1(X2), proper1(X3))
F3(ok1(X1), ok1(X2), ok1(X3)) -> F3(X1, X2, X3)
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 5 SCCs with 6 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F3(ok1(X1), ok1(X2), ok1(X3)) -> F3(X1, X2, X3)
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F3(ok1(X1), ok1(X2), ok1(X3)) -> F3(X1, X2, X3)
Used argument filtering: F3(x1, x2, x3) = x3
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
G1(mark1(X)) -> G1(X)
G1(ok1(X)) -> G1(X)
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
G1(ok1(X)) -> G1(X)
Used argument filtering: G1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
G1(mark1(X)) -> G1(X)
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
G1(mark1(X)) -> G1(X)
Used argument filtering: G1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(f3(X1, X2, X3)) -> PROPER1(X1)
PROPER1(g1(X)) -> PROPER1(X)
PROPER1(f3(X1, X2, X3)) -> PROPER1(X3)
PROPER1(f3(X1, X2, X3)) -> PROPER1(X2)
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(f3(X1, X2, X3)) -> PROPER1(X1)
PROPER1(f3(X1, X2, X3)) -> PROPER1(X3)
PROPER1(f3(X1, X2, X3)) -> PROPER1(X2)
Used argument filtering: PROPER1(x1) = x1
f3(x1, x2, x3) = f3(x1, x2, x3)
g1(x1) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(g1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(g1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
g1(x1) = g1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(g1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(g1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
g1(x1) = g1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TOP1(ok1(X)) -> TOP1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))
The TRS R consists of the following rules:
active1(f3(X, g1(X), Y)) -> mark1(f3(Y, Y, Y))
active1(g1(b)) -> mark1(c)
active1(b) -> mark1(c)
active1(g1(X)) -> g1(active1(X))
g1(mark1(X)) -> mark1(g1(X))
proper1(f3(X1, X2, X3)) -> f3(proper1(X1), proper1(X2), proper1(X3))
proper1(g1(X)) -> g1(proper1(X))
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
f3(ok1(X1), ok1(X2), ok1(X3)) -> ok1(f3(X1, X2, X3))
g1(ok1(X)) -> ok1(g1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.